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Abstract 
We review the work performed under LDRD ER grant 9%ERD-099. The goal of this work 
is to write a subroutine for a fluid turbulence code that allows it to incorporate wave-particle 
resonances (WPR). WPR historically have required a kinetic code, with extra dimensions needed 
to evolve the phase space distribution function, f( 2, ZJ, I!). Th e main results accomplished under 
this grant have been: 

(1) Derivation of a nonlinear closure term for 1D electrostatic collisionless fluid 
(2) Writing of a 1D electrostatic fluid code, “eslf,” with a subroutine to calculate the 

aforementioned closure term 
(3) derivation of several methods to calculate the closure term, including Eulerian, Euler- 

local, fully local, linearized, and linearized zero-phase-velocity, and implementation of these in 
eslf, 

(4) Successful modeling of the Landau damping of an arbitrary Langmuir wave, 
(5) Successful description of a kinetic two-stream instability up to the point of the first 

bounce, and 
(6) a spin-off project which uses a mathematical technique developed for the closure, 

known as the Phase Velocity Transform (PVT) to d ecompose turbulent fluctuations. 

I. Introduction 

In 1946, Landau discovered an effect (“Landau damping”) that occurs in collisionless 
fluids and plasmas, wherein particles resonate with waves and cause growth or damping 
of the wave. Since then, numerous studies have extended this effect to many different 
regimes. One belief that persisted to recent times is that theories of Landau Damping 
require retaining the entire phase-space distribution, f(z,~,t), which is generally quite 
complicated. However, starting with Ott and Sudan (1969), various closures have been 
able to include assorted aspects of Landau damping in fluid equations, with a “collisionless 
closure term” (CCT) that completes the collisionless fluid equations much as a viscosity 
does in the collisional limit. The most recent stage of this progression was a finding by 
myself, in 1997, of a method that includes in the CCT nearly all of the resonance effects 
present in the fluid equations (in principle). Fluid equations have half the dimensions of 
kinetic, so this promises to simplify greatly understanding of many systems. 

What remained was a demonstration that this new fluid “CCT” technique offers an 
actual improvement over current kinetic techniques of predicting collisionless fluids. This 
has been the goal of the current LDRD project. We choose the simplest system known to 
experience a variety of wave-particle resonance effects, the 1D electrostatic fluid. An exist- 
ing kinetic particle code, es1 [Birdsall and Langdon, 19851, solves this via the conventional 
kinetic equations, and provides a benchmark with which to compare. The ultimate goal is 
to have a fluid code, eslf, that can do everything es1 can but with far less computational 
time. The intended “blueprint” for the project is as follows: 
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1. Derive the CCT for a 1D electrostatic fluid. 
2. Write a 1D electrostatic fluid code that allows inclusion of the above term. 
3. Consider various known wave-particle resonance effects, such as linear landau damp- 

ing, trapping, plasma echoes, various kinds of scattering, cavitons and so forth, and 
try to get eslf to exhibit these. 

4. Experiment with various forms of calculating the closure term to see which is simpler, 
faster, or more able to obtain a variety of the above resonance effects. 

None of these are entirely straightforward: multiple choices exist for each step, and it is 
not a priori clear which is best. In the following, we describe how this work has progressed 
toward these goals. The work is not yet complete, and but there has been considerable 
progress. 

In addition to the main goals above, there have been two spin-off results, which are (1) 
generalization of the closure to general Hamiltonian system, (which encompasses pretty 
much any collisionless system in existence), and (2) using a new piece of mathematics 
developed in the theory (the Phase Velocity Transform) as a tool to analyze spatio-temporal 
fluctuations. These are described below. 

The remainder of this work is organized as follows. 
Section II gives the collisionless 1D electrostatic kinetic equation, and the correspond- 

ing kinetic equation with the closure term used to copy it. Section III discusses various 
methods derived for calculating the closure term. Section IV discusses the two physical 
scenarios we have addressed thus far, the O’Neil Problem and the Two-Stream Instabil- 
ity. Section V discusses the generalization of the CCT derived for a general collisionless 
Hamiltonian system. Section VI discusses a spin-off application of the work here, which is 
using the Phase Velocity Transform, an integral transform developed to derive the CCT, 
to analyze spatio-temporal fluctuation data. 

II. Model, Equations, and Collisionless Closure Term 

The system we model is a 1D periodic domain of length L, containing an arbitrary number 
of particle species o, each with its own charge qa, mass m,, and phase distribution function 
fa(x, 21, t). Through Poisson’s equation these species generate an electric field, E = -V4. 
This system evolves by a Vlasov equation for each species Q, 

&.fa -I- v&.fa i- (qa/m,)E& fa .= 0, (2-l) 

and Poisson’s equation 
a&b = -4nCq,n,. 

a 
(2.2) 

Fluid moments of Eq. (1) can be taken, giving the familiar fluid equations, 

&n, + &(nV), = 0 

&nV, i- k(nVV), = (qa/mo)Ena - &VP,. 
(2.3) 

(2.4 

As usual, for the moment hierarchy to be closed requires the pressure P to be calculated. 
Refs. (MattorII-MattorIV) explain the techniques to do this for Eq. (2.1), and we do not 
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repeat the details here because it is not the main focus of this paper. There are numerous 
possible forms of P, but the one we will focus on here is: 

Defining the terms in Eq. (2.5) is fairly cumbersome, and proceeds as follows. First, 
B-+(z) is a special function, 

B*(x) = -$i”;z;, 
f x 

where .Zpl is the nth derivative of the plasma dispersion function, defined as .@l(x/fi) = 

8:2*(x/&). The argument of B, is zup, the relative phase velocity normalized to the 
thermal velocity, 

wp - [vpp(wp ,wo) - VOJ /WA, 

where v~,~ is the accelerated phase velocity, defined as the solution to 

dt’xp(%vp,w’) = VpP(X,Vp,V’), 

GJpp(!?, ‘up, t; t’) = ax,, 0 

with the boundary conditions 

xp(x, up, t; t) = 2, 

~ppbJp,V) = ‘up- 

The term G$’ (or zt) is the phase velocity transform of n(x, t), defined as 

dx’ 6 [x’ - x*(x, q,, t; t’)] &n(x’, t’), 

3-t, is a Hilbert transform in x 

The inverse PVT is 

;‘;(x,t) N 
r 

dq, Et(x, t). 
--CO 

Finally, the equilibrium terms no, Vo, and To, are the (constant) density, velocity, and 

temperature of the initially specified Maxewellian for species Q, and vth = Tl’2, 

no (4 et4o(x, 4 = &-&$ exp 
I 1 

_ (v-vb)2 
2570 (4 * 

Details of the derivation of Eq. (5) can be found in MattorII. 
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III. Methods to compute the CCT 

The computation of the P given by Eq. (5) is clearly a challenge. Part of the work for the 
LDRD has been formulating several schemes for this. This section describes these schemes, 
and their advantages and disadvantages. 

The two challenging terms in Eq. (5) are the accelerated phase velocity, v~,~(x, up, t; to), 

and the transformed velocity and density, ;I;t(x, v,,,t) and n?i’(x, up, t). Possible methods 
include Eulerian and Lagrangian schemes in either x or up, local approximations, lineariza- 
tion, and using Fourier transforms. Over the last year, I have developed and tested several 
schemes, with some success and some failures. Below is a list of the main ones. 

A. Full Eulerian calculation 
The full Eulerian calculation is a “complete” method, in that it computes Eq. (5) to 

arbitrary numerical accuracy. The basic idea is to derive Eulerian differential equations 
-t 

for Et and nV , evolve them numerically on an Eulerian grid, and perform the integral in 
Eq. (5) based on knowledge of the full up spectrum. 

A small amount of manipulation of the definitions of 6? and zt produces the equa- 
tions 

{at + ~,a, + Eat,,} Fi’ = 0, (34 

{at + vp& + El%+} nT’ = ETi$, (3.2) 

with the initial conditions 

~S*(c,to) = 2r-&z*, (34 
ii?*([) to) = 2T-&wo3Jp + vopi-, (3.5) 

where the argument of & is [(up - Vi) /&vth]. Eqs. (3.1-3.2) are evolved, and then 

Zt = T-l,nt and zt = ?l,zf are used to get the fully transformed fields. Details of the 
derivation are given in Sec. 3 of MattorIV. 

Eqs. (3.1-3.2) can be solved straightforwardly by creating a grid in x and vup space, and 
--t 

stepping 6g and nV by the usual finite difference scheme. The approach thus resembles 
the standard “Vlasov method” of solving Eq. (1) for f(x, v, t), which uses a, grid in x, v 
space. There are no great time savings, but the hope was to create a “benchmark” solution 
to compare with later approximate methods. 

Unfortunately, it has proven difficult to find a good boundary condition in the up 
dimension for the full Eulerian calculation. A kinetic Vlasov code has no problem in the 
v dimension, because the kinetic distribution function is basically Gaussian, 

Y(X) v, t) N FM - e-v2/2vfh. 
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Since a Gaussian drops very quickly for large v, a Vlasov code can just take 7(x, v,,, , t) = 0 
with no difficulty. By comparison, the PVT quantities, like 72*(x, v~, t), fall asymptotically 
as l/v,, which is much slower. This can be seen from the above boundary condition, 

ii+(x,vp,t) - &z [ (VP - T/o) i&h] 

--+ x&IL/ (up - vo) (large up). 

It is fairly impossible to retain enough gridpoints so that ft becomes sufficiently close to 
zero. Possibly a good boundary condition can be found by assuming a smooth l/v, falloff 
of ;iit, but this has not been done yet. 

B. semi-Eulerian calculation 
The semi-Eulerian method begins with a shuffling around of the coordinates, boundary 

conditions, and fields, so that vup goes from a coordinate to an Eulerian field, up(x) t). The 

outcome of this transformation is that Et(x,t), zt(x,t), z+,(z) t) obey a set of Eulerian 
equations, 

atFit + &(z+vp) = 0 (3.6) 
i&v, -I- vp&vp = qE/m P-7) 

iZ+(x,t) = Fi+vp (3-8) 

The boundary conditions for Eqs. (3.6-3.8) are similar to the Eulerian boundary conditions: 

?? and zt are initially satisfy Eqs. (3.3-3.4)) f or an initial array of vp at each spatial point. 
On the surface, it appears that the semi-Eulerian calculation is as computationally in- 

tensive as the full Eulerian calculation, since no approximation is made. But an important 
difference is that the semi-Eulerian formulation no longer has any vup derivatives, &, . This 
is important, because it means that it is no longer necessary to keep a continuous range 
of up with which to calculate derivatives. More specifically, only the up that resonate with 
the 4 is, the new formulation of up allows a large simplification, which is that not all values 
of up must be retained. Therefore, in the semi-Eulerian scheme we can keep only the up 
that are resonant with the wave, and others can simply be dropped. For a monochromatic 

Langmuir wave, this means that we need a single up (and the concomitant Et and 3 ‘) 
initialized to the phase velocity of the wave, which then accelerates in the wave potential 
as bouncing proceeds. Generally however, 1D Langmuir waves have two branches, one for 
each direction of propagation. Therefore, the semi-Eulerian calculation needs to retain two 
sets of phase velocity variables, one for each direction. 

The semi-Eulerian closure method has been implemented in eslf with mixed results. 
It has been able to follow the nonlinear resonance dynamics of a damped Langmuir wave 
well, but only up to the point of the first “bounce,” which occurs when counter-streaming 
particles meet at the bottom of the potential well, and Et becomes double-valued. To rectify 
this, it is possible to numerically allocate two sheets for vup and %t, to retain information on 
the two counter-streaming trapped species. [Fig. l] However, the difficulty then becomes 
the boundary condition at the bottom of the well: initially, there is a steep jump in Et 
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at the bottom of the well that tends to diffuse away rapidly, due to numerical dissipation. 
[Fig. 21 These obstacles are probably surmountable with a little effort. 

0 = Lagrangian n f 

Eulerian ut density 
faster than wave 

Eulerian n+ density 

vpgf-- vpb II 
X X 

Figure 1: Illustration of the semi-Eulerian scheme, showing how two sheets of $(x,to) 
and z+,(Lc, to) are initialized. [Next figure shows how evolution of trapping progresses.] 



vpiz- “k “~ vpk 
X 

linear bounce mixing ’ BGK 

Figure 2: Semi-Eulerian method of handling trapping and phase mixing. One density 
field Et is retained for each side of the potential well; shown is one side of these. In the 
linear phase, the particles on one side of the potential well accelerate without crossing 
over. After a quarter-bounce time, they cross the middle of the well. After a half-bounce 
time, Et crosses to.the other sheet of n -t. The two species mix and form a BGK mode. 
Though the scheme is worked out conceptually, in practice it has proven difficult to find a 
differencing scheme that maintains the discontinuity in the linear phase and crosses over 
the bottom of the well at the right time in the bounce phase. 

C. Local approximation 
The local calculation is the simplest of all the nonlinear closures thus far attempted, 

and so far has proven the most successful. The equations follow from a method to approx- 
imate the PVT locally in space and time, described in MattorIV. The upshot of this is 
that F8 gets a very simple approximation, 

n+yx, VP, t) = Z(X) t)S(Vp - ?p)) 
where 

loc,s = ati? 
vP 

-- 
a,iP 

n-V3 
=- 

izis 

and, 
?(x, t) E 3(1 - is7-l,)icis(~, t) 

-t 
with s = f is the half of n” with sk > 0 This approximation also gives nV as 

(3.10) 

(3.11) 

Zts = g&pw 
P - 

Placing these terms into Eq. (5) g ives a nicely simple expression for the pressure, 

P N -mnV2 + ToGi + 2Re v~~B+[(v~~‘+ - K#hh]n~+(x,t)] . (3.12) 
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A nice feature of Eq. (3.11) is that it is fully local in time; that is, it can be calculated 
completely from any instantaneous fluid state, with no variables needed beyond the usual 
fluid fields n(z) and nV(z). [I n contrast, the full Eulerian and semi-Eulerian methods 
require extra variables to retain the time histories.] 

A difficulty which arises in the local method is “branch mixing,” defined as follows. 
For any given wavelength there are typically several branches, i.e., multiple solutions for 
the phase velocity (or frequency). For the 1D electrostatic dynamics in eslf there are two 
branches: left and right traveling Langmuir waves. A general G and z are superpositions 
of these waves, which might be written as 

E= c ni 
i 

- - 
nV = c nVi, 

i 

where each wave i has its own phase velocity and resonance dynamics. On the other hand, 
the local phase velocity as given by Eq. (3.11) d oes not separate waves, so produces some 
hybrid z+, that does not represent any actual wave. This can lead to numerical difficulties 
like inaccuracy or instability. It is necessary to separate fluctuations the various branches, 
and calcula,te the closure part of the pressure separately for each i, with phase velocity 

loc,s nV” 
Vupli = - 

na ’ 

This is possible because the Vlasov equation and the closure term are linear in f, hence 
the closure term is superxosable. 

Separating G and nV into the separate branches [here left and right propagating 
waves], has been surprisingly difficult. The most successful method so far has been to 

(1) Complexify the evolution equations, 
(2) Write the evolution equations in eikonal form, as a polynomial in up, then, 
(3) Factor them into components. 

The case of a single spezies electron @rid allows a simple.illustration. Two fields can be 
eliminated via G = -C&E and 6 =&E, and the equation complexified, leaving 

(3.13) 

Assuming the usual eikonal ordering for Eq. (3.13) allows & + -iw and & + -ilc and 
produces 

[ 
u2 - B(v,/vth)kw - v&k2 - u& - %+/E+] .$ = 0. 

This can be factored to produce, 

[ % lot - “p* I[ 
-+ UPE - v;$+ = 0, 1 (3.14) 

where 

v;.j s B/2 f 2/4 + 1 + (1 + niZ+/i%+)/k2, 
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where Ic = in-‘-/E+ in the eikonal approximation. Written this way, Eq. (3.14) shows that 
the term in the second brackets is a wave, and the operator in the first brackets makes it 
vanish. Therefore, we can write the two waves @ as 

Ez xz [?JFc - $!!I E+ (3.15) 

up* = vg (3.16) 

where v:” = nv+/G+ as above. Separating the wave this way and calculating two pres- 
sure terms appears to fix a numerical instability associated with excitation of a back- 
propagating wave. 

Separating the wave this way works well for the l-species O’Neil problem, but difficul- 
ties arise when generalizing it to multiple species. First, the size of the matrix to be solved 
increases like twice the number of species, which becomes rapidly cumbersome. Second, 
it does not allow for waves which may be introduced from a source outside the system. 
Third, it incorporates coupling between different fluid species, which is cumbersome and 
also unnecessary in a collisionless system: the only coupling is from a given species to the 
electric field. There is a better meth.od which circumvents all these difficulties. First one 
should somehow divide the wave in 4 into separate waves. Then, for each fluid species 
calculate the waves that arise in response to the waves in the field, which is independent of . 
the other species. The linearity of the Vlasov equation in f should be of great help here. 
For each wave in 4 there should be two waves in each species, one for the “forward” wave 
(which uses the positive branch of the 2, function) and one for the “backward” wave. We 
are currently working on methods to do this. 

D. Linearized calculation (Chang-Callen) 
Early work by Ott and Sudan and later by Chang and Callen calculated collisionless 

closure for linearized equations, which is significantly more restrictive than the nonlinear 
closure above. However, we can always linearize the closure term, which facilitates calcula- 
tion. The result is similar to the local approximation above, except that #“j+ is replaced 
by the linear phase velocity, v:~, calculated as an eigenvalue of the linear dispersion rela- 
tion. 

P z -mnV2 + ToEi + 2Re 
[ 
vthB+[(vp lin - VO,/vth]nV+] . (3.17) 

It is relatively straightforward to calculate this term, and no difficulty seems to arise in 
the code runs [like the branch mixing mentioned above]. The difficulty with the linearized 
closure is that it misses nonlinear effects such as particle trapping, since #n is constrained 
to being a single value, without feedback from the nonlinearly evolving wave. Thus lin- 
earizing the CCT simplifies computation quite a bit, but sacrifices much of the nonlinear 
trapping the dynamics. In particular, the Landau pole is always fixed on a single branch, 
and is unable to display the dynamical reversal when bouncing occurs [MattorI, MattorII]. 

E. Linearized up 7 0 calculation (Hammet-Perkins) 
Following the work of Hammet and Perkins, it is possible to simplify further beyond 

linearization, and take the limit where the argument of B is zero. This gives a great 
simplification to the closure, 

P ill -mnv2 j-TOE - Vth (3.18) 
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This has even further simplicity, since there is no up that needs to be calculated, but has 
the same loss of bounce dynamics that the linearized calculation has, and a further loss of 
accuracy. 

IV. Problems addressed 

The calculations mentioned in the previous section were developed while considering two 
basic problems, which we call “The O’Neil Problem” and “Two-Stream Instability.” Work 
on these is still progressing and the ideal solution has yet to be found, but in this section 
we discuss some of the results and obstacles encountered. 

A. The O’Neil Problem 

“The O’Neil problem” refers to the situation addressed by O’Neil in 1965 [O’Neil]. A 
Maxwellian 1D electrostatic plasma is initialized with a Langmuir wave. Initially the reso- 
nant particles accelerate in the wave potential, and the wave undergoes Landau damping. 
But with time, the resonant particles travel far enough to cross the potential well bottom, 
and then begin to decelerate. Since energy is conserved, the Landau damping reverses and 
the wave grows. The particles bounce back and forth like this and eventually mix and 
become a “BGK mode.” [Sagdeev and Galeev]. 

A large part of this project was spent considering this problem, and much progress 
was made. All of the above methods except the full Eulerian calculation were able to 
follow the linear damping phase with suitable accuracy. (Fig. 3) The nonlinear phase 
proved considerably trickier however, for the unexpected reason that the benchmarlc code, 
esl, gives ambiguous results. More specifically, as seen from Fig. 3, es1 damps at the 
linear rate for a couple orders of magnitude, then the damping ceases. This would appear 
to be from trapping, but according to [Denavit and Walsh 19811 the time of saturation 
is sufficiently shorter than a bounce time to rule out any trapping effect. Denavit and 
Walsh also cite a kinetic Vlasov code, which show no trapping at all, and conclude that 
the apparent bouncing in es1 comes from an insufficient number of particles in the vicinity 
of the resonance. By the time the wave has damped to its former bounce level, the number 
of resonant particles is even less. The upshot of this is that at high wavenumber, where 
Landau damping is strong, es1 shows spurious bouncing. At low wavenumber the Landau 
damping is too weak to be reliably diagnosed. Thus, we had no reliable way of telling if 
eslf is accurate, and so this was basically not a good problem to carry to completion. 

Nonetheless, a wealth of information was learned from the O’Neil problem, including 
the development of the plethora of computational schemes discussed above. The good news, 
mostly expected, was that eslf outperforms es1 in several ways. The results were more 
accurate, with no appreciable noise and no spurious bouncing. The fluid code was much 
faster, since it used a 1D spatial grid, not the 2D grid (~~2)). Finally, eslf unexpectedly 
requires far fewer spatial grid points than esl: for the results shown, eslf required 32 grid 
points to obtain results comparable to es1 runs with 256 grid points. The reason for this 
large savings is not known. 
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Wave Energy from different codes 

lE-081 \ I 
0 Time 35 

Figure 3: Comparison electrostatic energy history from several computational schemes. 
The codes were started with kX0 =0.5 and G/no = 0.02. The wave decayed by Landau 
damping. 

- esl: Energy decayed at first by the linear decay rate. The decay stopped after 
energy diminished by about 2 orders of magnitude. According to Denavit and Walsh, the 
saturation of the decay is earlier than a bounce time, and ,therefore spurious. 

- semi-Eulerian CCT: The semi-Eulerian method described above initially damps 
at the linear rate. As the resonant particles fall toward the bottom of the potential well 
the damping begins to stop. The code crashes at that point, because the particles meeting 
at the bottom of the well are constrained to give single-valued density G-ii [Fig. 41. The 
code needs to be modified to allow convergent particles to move around each other. 

- local CCT: Energy damped steadily at the linear rate. According to [Denavit and 
Walsh, 19811, th’ IS is the correct result in this range, since it agrees with a kinetic Vlasov 
code. 

- Chang-Callen CCT: The damping is linear, and largely indistinguishable from the 
local CCT result. 

- Hammet-Perkins CCT: Energy damps steadily at about twice the correct rate. 
The oscillations come from the initial wave having a benign component of standing wave. 
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0 x 2L 

Figure 4: Evolution of the semi-Eulerian phase velocity relative to the potential, in the 
rest frame of the wave. The velocity falls toward the center of the potential well until 
opposing streams meet at the bottom. The code is not yet designed to evolve beyond. this 
phase. 
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B. Two-Stream Instability 

After realizing the unsuitability of the O’Neil problem for nonlinear testing of eslf, 
we turned attention to the Two-Stream Instability. This is another classic problem, where 
two counter-streaming electron beams are electrostatically unstable [Birdsall and Langdon]. 
The unstable mode grows up to nonlinear levels, and when the accelerated electrons cross 
the bottom of the potential well the wave begins to damp. Resonant electrons continue to 
orbit back and forth, phase mixing ensues, and the instability ends up as a steady BGK 
mode which lasts a long time. The fact that bouncing occurs when the wave is at its 
largest amplitude, not smallest, makes this better than the O’Neil problem for numerically 
studying nonlinear trapping dynamics, phase mixing, and asymptotic formation of the 
BGK mode. 

The local approximation described above has been able to follow the two-stream in- 
stability very accurately up to the time of the first bounce. In several important ways, eslf 
has proven superior to esl. There is no detectable particle noise, and it is far faster and 
more efficient because it saves a dimension. Figs. 5 and 6 show the a-stream instability as 
described by es1 and eslf, respectively. The agreement is quite good up the time of the 
first bounce. 

The current problem that needs to be surmounted in eslf is the difficulty that arises at 
the first particle bounce. What happens is that the particles which have bounced collide 
with the particles that haven’t. In the kinetic system, the extra dimension allows the 
particles to travel arozlnd each other, but in the fluid system there is no such route. The 
over-compression causes numerical instability and eslf crashes. The density is trying to 
become double valued, as it does with a breaking wave, but eslf does not currently allow 
this. 

What is needed to surmount this problem is (1) to develop some criterion for recogniz- 
ing such a bounce, and (2) divide th e b ounced part of the fluid from the unbounced part, 
and (3) reassign the bounced part to another sheet or to another species. The “unbounced” 
and “bounced” parts of the species, with forward and reverse Landau damping, respec- 
tively, which are to be assigned the + and - branches of the Z&-function. The separated 
part of the bouncing particles can be reassigned in several places, such as to a second sheet 
of i‘it [such as we have done in the semi-Eulerian computation above]. Another possibly is 
to create a species of “clumps” or “holes” that could coexist with the fluid plasma, which 
are launched at the time of a bounce. We are currently working on methods to do steps 
(1) and (2) above, such as the factoring of the locally approximated dynamical equations 
described in the “local approximation” section above. 
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Growth Phase 

0 x I. 

First Bounce 

0 x I. 

BGK Mode (hole) 

Figure 5: Kinetic picture of 2-stream instability, as given by esl. In the instability 
phase, a sinusoidal wave grows. In the bounce phase, the trapped particles bounce in the 
electrostatic well. After many bounces, the trapped particles are phase mixed into a BGK 
mode, also known as a “hole.” 

Notice that the density is very rough, due to noise from particle discreteness. 
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Linear growth 

0 I 2l. 
0 I 2L 

Bouncing & Numerical instability 
wave breaking 

Figure 6: Fluid picture of 2-stream instability, as given by eslf with the “local” approxi- 
mation to the CCT. The solution is quite faithful to the kinetic solution, up to the point 
of the first bounce, where the eslf is not yet designed to handle the multi-valued dens&y 
that ensues. Interestingly that the numerical instability is a grid-scale oscillation in nV 
that occurs in the region where the kinetic code has split the species in two; it is almost as 
if the fluid code is trying to obey this double-valuedness as best it can. 

This fluid code runs much faster than the kinetic code, and the particle noise in 6 is 
clearly much reduced. 

15 



V. Hamiltonian Collisionless Closure Term 

An important accomplishment of this project was generalizing the CCT from the 1D 
electrostatic Vlasov equation, Eq. (2.1)) t o a much more general “Hamiltonian Vlasov 
equation” 

‘tf + (apiH) ‘,if- (a,iH) ‘*if = ‘7 (5.1) 

where (Q;, pi) are the Ph components of canonical position and momentum coordinates. 
For later convenience, we assume the Hamiltonian to have the quadratic form 

N(%P,t) = $(P - a) * W. (p - a) + U 

where W(q, t), ah, 9, u(q) t> and the dimension D are arbitrary. Such a Hamiltonian 
encompasses many collisionless systems, including an ideal gas (H = p2/2m), a self- 
gravitating astrophysical gas (H = p2/2m + rn$ ) a plasma in an electro-magnetic field 
(H = (p - eA/c)2/2m + e$), or even a Liouville equation for N particles (H = some 
function on 6N dimensional space). Thus, the CCT for’this equation has a very wide 
range of applications. 

In a yet-to-be-released paper, the collisionless closure procedure has been applied to 
Eq. (5.1). Here, we skip the arduous details, and just state the results. For compactness, 
the moment equations are truncated at the first, giving 

(5.2) 

(5.3) 

where 

P = J-dDp 
PVi = SdDp (api H) f 

3; = SdDp (‘tap, H + {H, api H}) f 
Pij = JdDp(&H - K)(a,, H - y)f 

As before, the pressure term requires closure. After a great deal of calculation, it comes 
out to 

pij(q, t) = 

2&, VP, t> = 
s 

dDP 
tw(P - ‘P) - v - vOPli tw(P - ‘P) - v - vOPlj 

W(P - JP) - VopI - VpI 

X exp 
[ 
-&-p.w.p 

OP 1 
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w = [l + AlT W [l + A] 

{S 

to 
bp = [l + A]-’ dt’f(qp(q, vp, t’), t’) - Av, 

t 
f = -V,U - &a + Vp,ivqUi - V,a. VP 

s 

t0 

A= dt’Vqp a&, t’> 
t 

While this work has the potential to be extremely valuable, I have come to the realization 
that no one will have the attention span to follow it unless I can make the simpler version 
more accessible. [For example, .I seriously doubt if anyone will ever read these words I 
am writing now.] Therefore, I decided that before releasing this generalized version, it 
is important to make the simplified version [lD electrostatic CCT] able to be computed 
in a simple code that requires very little brainpower. For this reason, the generalized 
Hamiltonian work above was put on the back burner and we returned to writing eslf. 

VI. Phase Velocity Transform 

The most dramatic and useful result of the last year has been a “spin-off” project, which 
uses the mathematics developed for deriving the CCT. Specifically, in deriving the CCT, 
we developed the “Phase Velocity Transform” (PVT), which is an integral transform that 
divides a function of space and time into components propagating at constant phase ve- 
locities without distortion [Fig. 71. 

+ 

Figure 7: Cartoon of phase velocity transform, which divides a function of space and time, 
f(z, t), into components which propagate at constant phase velocities, without distorting. 

Though originally developed for solving differential equations, the PVT also has a use 
in decomposing spatio-temporal fluctuations. It has at least two advantages over other 
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methods currently in common use (e.g., Fourier analysis, singular value decomposition, 
and wavelets). 

First, it avoids imposing basis functions with some preset form, such as sine waves 
or wavelets. Second, the PVT does not force space-time separation of basis functions, 
f(x,t) = CA(~)%(Z), h h w ic can be awkward in representing propagating waves, which 
generally have an inseparable space-time dependence u;(x - ~+t). For both these rea- 
sons, the PVT is good for picking propagating structures of unknown shape out of noisy 
backgrounds. These occur in a number of physical systems, particularly nonlinear fluids, 

To develop this the spatio-temporal signal analysis aspect, the PVT was used to 
decompose fluctuation data from the Sustained Spheromak Physics Project (SSPX) at 
LLNL, as an alternative to standard techniques such as Fourier or wavelet transforms, or 
singular-value decomposition. In fact, we have learned very much about the SSPX fluctu- 
ations that would not be otherwise available from the various other transforms, regarding 
non-sinusoidal shapes of the waves, nonlinear interactions of the waves, and a more de- 
tailed view of the spectrum than is otherwise available. More information can be found in 
UCRL-JC-136756 [MattorV], which has been submitted to Physical Review Letters. 
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